Decreasing the chlorophyll a/b ratio in reconstituted LHCII: structural and functional consequences.

نویسندگان

  • F J Kleima
  • S Hobe
  • F Calkoen
  • M L Urbanus
  • E J Peterman
  • R van Grondelle
  • H Paulsen
  • H van Amerongen
چکیده

Trimeric (bT) and monomeric (bM) light-harvesting complex II (LHCII) with a chlorophyll a/b ratio of 0.03 were reconstituted from the apoprotein overexpressed in Escherichia coli. Chlorophyll/xanthophyll and chlorophyll/protein ratios of bT complexes and 'native' LHCII are rather similar, namely, 0.28 vs 0. 27 and 10.5 +/- 1.5 vs 12, respectively, indicating the replacement of most chlorophyll a molecules with chlorophyll b, leaving one chlorophyll a per trimeric complex. The LD spectrum of the bT complexes strongly suggests that the chlorophyll b molecules adopt orientations similar to those of the chlorophylls a that they replace. The circular dichroism (CD) spectra of bM and bT complexes indicate structural arrangements resembling those of 'native' LHCII. Thermolysin digestion patterns demonstrate that bT complexes are folded and organized like 'native' trimeric LHCII. Surprisingly, in the bT complexes at 77 K, half of the excitations that are created on either chlorophyll b or xanthophyll are transferred to chlorophyll a. No or very limited triplet transfer from chlorophyll b to xanthophyll appears to take place. However, the efficiency of triplet transfer from chlorophyll a to xanthophyll is close to 100%, even higher than in 'native' LHCII at 77 K. It is concluded from the triplet-minus-singlet and CD results that the single chlorophyll a molecule that on the average is present in each bT complex binds preferably next to a xanthophyll molecule at the interface between the monomers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

9-cis-Neoxanthin in Light Harvesting Complexes of Photosystem II Regulates the Binding of Violaxanthin and Xanthophyll Cycle1[OPEN]

The light-harvesting chlorophyll a/b complex of photosystem II (LHCII) is able to switch to multiple functions under different light conditions (i.e. harvesting solar energy for photosynthesis and dissipating excess excitation energy for photoprotection). The role of the different carotenoids bound to LHCII in regulating the structure and function of the complex is a long-lasting question in ph...

متن کامل

9-cis-Neoxanthin in Light Harvesting Complexes of Photosystem II Regulates the Binding of Violaxanthin and Xanthophyll Cycle.

The light-harvesting chlorophyll a/b complex of photosystem II (LHCII) is able to switch to multiple functions under different light conditions (i.e. harvesting solar energy for photosynthesis and dissipating excess excitation energy for photoprotection). The role of the different carotenoids bound to LHCII in regulating the structure and function of the complex is a long-lasting question in ph...

متن کامل

Diurnal Fluctuations in the Content and Functional Properties of the Light Harvesting Chlorophyll a/b Complex in Thylakoid Membranes : Correlation with the Diurnal Rhythm of the mRNA Level.

Diurnal fluctuations were observed in the content and some structural and functional properties of the light-harvesting chlorophyll (Chl) a/b pigment-protein complex of photosystem II (LHCII) in young developing wheat (Triticum aestivum) leaves grown under 16 hours light/8 hours dark illumination regime. The fluctuations could be correlated with the diurnal oscillation in the level of mRNA for ...

متن کامل

The Subcomplex Organization of the Major Chlorophyll «/6-Protein Light- Harvesting Complex of Photosystem II (LHCII) in Barley Thylakoid Membrane

Z. Naturforsch. 51c, 454-463 (1996); received November 23, 1995/March 4, 1996 Barley, Isoelectric Focusing. Light Harvesting Complex. Polypeptide. Subcomplex, Trimer The major chlorophyll «/b-protein light-harvesting complex of photosystem II (LHCII) isolated form barley photosynthetic membrane was shown to contain five major polypeptides only two of which (26.7 and 25.6 kDa) were found to be i...

متن کامل

Chlorophyll b can serve as the major pigment in functional photosystem II complexes of cyanobacteria.

An Arabidopsis thaliana chlorophyll(ide) a oxygenase gene (cao), which is responsible for chlorophyll b synthesis from chlorophyll a, was introduced and expressed in a photosystem I-less strain of the cyanobacterium Synechocystis sp. PCC 6803. In this strain, most chlorophyll is associated with the photosystem II complex. In line with observations by Satoh et al. [Satoh, S., Ikeuchi, M., Mimuro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 38 20  شماره 

صفحات  -

تاریخ انتشار 1999